Topology of Curves in Projective Space
نویسنده
چکیده
We survey and expand 1 on the work of Segal, Milgram and the author on the topology of spaces of maps of positive genus curves into complex projective space (in both the holomorphic and continuous categories). Both based and unbased maps are studied and in particular we compute the fundamental groups of the spaces in question. The relevant case when n = 1 is given by a non-trivial extension which we determine.
منابع مشابه
Real Gromov-Witten Theory in All Genera
The study of curves in projective varieties has been central to algebraic geometry since the nineteenth century. It was reinvigorated through its introduction into symplectic topology in Gromov’s seminal work [4] and now plays prominent roles in symplectic topology and string theory as well. The foundations of (complex) Gromov-Witten invariants, i.e. counts of J-holomorphic curves in symplectic...
متن کاملSmooth Projective Planes
Using symplectic topology and the Radon transform, we prove that smooth 4-dimensional projective planes are diffeomorphic to CP. We define the notion of a plane curve in a smooth projective plane, show that plane curves in high dimensional regular planes are lines, prove that homeomorphisms preserving plane curves are smooth collineations, and prove a variety of results analogous to the theory ...
متن کاملRestrictions on Arrangements of Ovals of Projective Algebraic Curves of Odd Degree
This paper investigates the first part of Hilbert’s 16th problem which asks about topology of the real projective algebraic curves. Using the Rokhlin-Viro-Fiedler method of complex orientation, we obtain new restrictions on the arrangements of ovals of projective algebraic curves of odd degree d = 4k + 1, k ≥ 2, with nests of depth k.
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملCounting rational curves of arbitrary shape in projective spaces
We present an approach to a large class of enumerative problems concerning rational curves in projective spaces. This approach uses analysis to obtain topological information about moduli spaces of stable maps. We demonstrate it by enumerating one-component rational curves with a triple point or a tacnodal point in the three-dimensional projective space and with a cusp in any projective space. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008